FUNCTIONAL TESTING OF THE VARIABLE GEOMETRY SUSPENSION (VGS) PROTOTYPE ON BUMPY ROAD CONDITIONS

Main Article Content

Dafa Aditya Murti
Miftachul Huda
Ferly Isnomo Abdi
Diah Wulandari
Firman Yasa Utama

Abstract

Background. Modern vehicles must prioritize comfort and safety, including the suspension system. While passive suspension systems are common, they struggle with excessive vibrations on uneven roads. Semi-active and active systems address this but are costly and complex. To solve this, a Variable Geometry Suspension (VGS) prototype was developed, integrating an active actuator into a passive system to adjust its geometry, providing performance comparable to active suspension systems.


Research Purpose. This study aims to examine the effect of single-link angle variations in the Variable Geometry Suspension (VGS) prototype on bumpy roads to determine the most comfortable single-link angle.


Research methods. This research employs a Research and Development (RnD) method by testing the single-link angle at 0°, 90° (reference angle), and 180°. Data collection was conducted by introducing road disturbances in the form of a bumpy road.


Findings. The testing results showed that the lowest Root Mean Square (RMS) value of the sprung-mass was at a single-link angle of 90°, with an RMS value of 0.72 m/s². This indicates a "Fairly Uncomfortable" level based on ISO 2631, with the damper on the unsprung-mass (ct) and tire stiffness (kt) disregarded, as well as the weight of the sprung-mass.


Conclusion. The VGS prototype's response to changes in the single-link angle on bumpy roads varies. However, the system effectively reduces vibrations at all angles, stabilizing the vehicle's body (sprung-mass) as the wheel (unsprung-mass) moves over uneven surfaces.

Article Details

How to Cite
Murti, D. A., Huda, M., Abdi, F. I., Wulandari, D., & Firman Yasa Utama. (2024). FUNCTIONAL TESTING OF THE VARIABLE GEOMETRY SUSPENSION (VGS) PROTOTYPE ON BUMPY ROAD CONDITIONS. DIVERSITY Logic Journal Multidisciplinary, 2(3), 129–139. https://doi.org/10.61543/div.v2i3.107
Section
Articles

References

F. T. K. Negara, I. Haryanto, and T. Prahasto, “Analisis Pengaruh Suspensi Terhadap Performa Pengereman Mobil Sedan Menggunakan Altair Motionview (in Indonesia),” J. Tek. Mesin S-1, vol. 12, no. 1, pp. 99–110, 2024.

S. B. A. Kashem et al., “A Study and Review on Vehicle Suspension System and Introduction of a HighBandwidth Configured Quarter Car Suspension System Functional, Sustainable, and Lightweight Materials View project Additive Manufacturing View project,” Aust. J. Basic Appl. Sci., no. July, pp. 59–66, 2015, [Online]. Available: https://www.researchgate.net/publication/342709347

V. Gaikwad and A. S. Ugale, “Overview of Active Suspension System,” Int. Res. J. Eng. Technol., no. June, pp. 759–763, 2020, [Online]. Available: www.irjet.net

A. R. Bhise, R. G. Desai, M. R. N. Yerrawar, A. C. Mitra, and D. R. R. Arakerimath, “Comparison Between Passive And Semi-Active Suspension System Using Matlab/Simulink,” IOSR J. Mech. Civ. Eng., vol. 13, no. 04, pp. 01–06, 2016, doi: 10.9790/1684-1304010106.

A. An-Nizhami, N. Apriandi, P. Yanuar, and W. I. Nugroho, “Pemodelan Sistem Suspensi Pasif dan Semi Aktif Regeneratif dengan Model Half Car dan Eksitasi Harmonik (in Indonesia),” J. Rekayasa Mesin, vol. 17, no. 2, p. 297, 2022, doi: 10.32497/jrm.v17i2.3720.

M. McCallig and V. Pakrashi, “Whole-Body Vibration Exposure from incubators in the Neonatal care Setting: A Review.,” J. Env. Occup Heal., vol. 11, no. 2, pp. 37–46, 2021.

T. Yuvapriya, P. Lakshmi, and S. Rajendiran, “Vibration control and performance analysis of full car active suspension system using fractional order terminal sliding mode controller,” Arch. Control Sci., vol. 30, no. 2, pp. 295–324, 2020, doi: 10.24425/acs.2020.133501.

C. Arana, S. A. Evangelou, and D. Dini, “Series active variable geometry suspension for road vehicles,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 1, pp. 361–372, 2015, doi: 10.1109/TMECH.2014.2324013.

C. Arana, S. A. Evangelou, and D. Dini, “Series Active Variable Geometry Suspension application to comfort enhancement,” Control Eng. Pract., vol. 59, no. December 2016, pp. 111–126, 2017, doi: 10.1016/j.conengprac.2016.11.011.

F. I. Abdi, U. Wasiwitono, H. Arizal, and A. H. Ramadani, “Kineto-Dynamic Pada Variable Geometry Suspension ( VGS ) (in Indonesia),” J. Rekayasa Mesin, vol. 06, pp. 57–62, 2021.

M. Yu, C. Arana, S. A. Evangelou, and D. Dini, “Quarter-Car Experimental Study for Series Active Variable Geometry Suspension,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 743–759, 2017, doi: 10.1109/TCST.2017.2772912.

M. I. ALFIAN, “Analisis Pengaruh Perubahan Geometri Suspensi Terhadap Dinamika Getaran Honda Cbr 150R (in Indonesia),” Institut Teknologi Sepuluh Nopember (ITS), 2018.

M. Yu, C. Cheng, S. A. Evangelou, and D. Dini, “Robust Control for a Full-Car Prototype of Series Active Variable Geometry Suspension,” Proc. IEEE Conf. Decis. Control, vol. 2019-Decem, no. Cdc, pp. 7615–7622, 2019, doi: 10.1109/CDC40024.2019.9029344.

F. I. Abdi, Analisis Dinamis pada Variable Geometry Suspenssion (VGS) dengan Kendali LQR dan LQG (in Indonesia), no. 1. Surabaya, Indonesia: Institut Teknoligi Sepuluh November (ITS), 2018.

M. Yu, C. Cheng, S. Evangelou, and D. Dini, “Series Active Variable Geometry Suspension: Full-Car Prototyping and Road Testing,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 3, pp. 1332–1344, 2022, doi: 10.1109/TMECH.2021.3097153